Ya hay un adelanto de cómo será el nuevo telescopio espacial Webb

Redacción | 06/10/2020

Comparativa de imágenes parciales de la Nebulosa Carina de 2015 y 2018 desde el telescopio Gemini South. La de la derecha, la más reciente, incluye la corrección de la distorsión que produce la atmósfera terrestre.

El telescopio espacial James Webb de la NASA aún está a más de un año de su lanzamiento, pero el telescopio Gemini South en Chile ha brindado una idea de lo que debería ofrecer el observatorio orbital.

Usando una cámara de óptica adaptativa de campo amplio que corrige la distorsión de la atmósfera terrestre, los astrónomos Patrick Hartigan y Andrea Isella de Rice University y Turlough Downes de Dublin City University usaron el telescopio de 8,1 metros para capturar imágenes de infrarrojo cercano de la Nebulosa Carina con la misma resolución que es esperada del telescopio Webb.

Hartigan, Isella y Downes describen su trabajo en un estudio publicado en línea esta semana en Astrophysical Journal Letters. Sus imágenes, recopiladas durante 10 horas en enero de 2018 en el Observatorio internacional Gemini muestran parte de una nube molecular a unos 7.500 años luz de la Tierra. Se cree que todas las estrellas, incluido el sol de la Tierra, se forman dentro de nubes moleculares.

"Los resultados son asombrosos", dijo Hartigan en un comunicado. "Vemos una gran cantidad de detalles nunca antes observados a lo largo del borde de la nube, incluida una larga serie de crestas paralelas que pueden ser producidas por un campo magnético, una notable onda sinusoidal casi perfectamente suave y fragmentos en la parte superior que parecen estar en el proceso de ser cortado de la nube por un fuerte viento ".

Las imágenes muestran una nube de polvo y gas en la Nebulosa Carina conocida como Muro Occidental. La superficie de la nube se evapora lentamente bajo el intenso resplandor de la radiación de un cúmulo cercano de estrellas jóvenes masivas. La radiación hace que el hidrógeno brille con luz infrarroja cercana, y los filtros especialmente diseñados permitieron a los astrónomos capturar imágenes separadas de hidrógeno en la superficie de la nube e hidrógeno que se estaba evaporando.

Un filtro adicional capturó la luz de las estrellas reflejada por el polvo y la combinación de las imágenes permitió a Hartigan, Isella y Downes visualizar cómo interactúan la nube y el cúmulo. Hartigan había observado previamente el Muro Occidental con otros telescopios y dijo que era una excelente opción para seguir con el sistema de óptica adaptativa de Gemini.

"Esta región es probablemente el mejor ejemplo en el cielo de una interfaz irradiada", dijo. "Las nuevas imágenes son mucho más nítidas que cualquier cosa que hayamos visto anteriormente. Proporcionan la visión más clara hasta la fecha de cómo las estrellas jóvenes masivas afectan su entorno e influyen en la formación de estrellas y planetas ".

Las imágenes de las regiones de formación de estrellas tomadas desde la Tierra generalmente se ven borrosas por las turbulencias en la atmósfera. Colocar telescopios en órbita elimina ese problema. Y una de las fotografías más icónicas del telescopio espacial Hubble, "Pilares de la Creación" de 1995, capturó la grandeza de las columnas de polvo en una región de formación de estrellas. Pero la belleza de la imagen desmiente la debilidad del Hubble por estudiar las nubes moleculares.

"El Hubble opera en longitudes de onda ópticas y ultravioleta que están bloqueadas por el polvo en regiones de formación de estrellas como estas", dijo Hartigan.

Debido a que la luz del infrarrojo cercano penetra en las capas externas de polvo de las nubes moleculares, las cámaras de infrarrojo cercano como el generador de imágenes de óptica adaptativa Gemini South pueden ver lo que hay debajo. A diferencia de las cámaras infrarrojas tradicionales, el generador de imágenes de Gemini South utiliza "un espejo que cambia de forma para corregir el brillo de nuestra atmósfera", dijo Hartigan. El resultado: fotografías con aproximadamente 10 veces la resolución de las imágenes tomadas con telescopios terrestres que no utilizan óptica adaptativa.

Pero la atmósfera causa más que borrosidad. El vapor de agua, el dióxido de carbono y otros gases atmosféricos absorben algunas partes del espectro del infrarrojo cercano antes de llegar al suelo.

"Muchas longitudes de onda del infrarrojo cercano solo serán visibles desde un telescopio espacial como el Webb", dijo Hartigan. "Pero para las longitudes de onda del infrarrojo cercano que llegan a la superficie de la Tierra, la óptica adaptativa puede producir imágenes tan nítidas como las adquiridas desde el espacio".

Las ventajas de cada técnica son un buen augurio para el estudio de la formación de estrellas, dijo.

"Estructuras como el Muro Occidental serán valiosos terrenos de caza para telescopios Webb y terrestres con óptica adaptativa como Gemini South", dijo Hartigan. "Cada uno perforará las cubiertas de polvo y revelará nueva información sobre el nacimiento de las estrellas".

Sentimiento general

Si te equivocas de voto, puedes desmarcarlo volviendo a hacer clic en el voto erróneo.
0
Comentarios

Hola!, escribe un comentario para esta noticia.Comentar


Lo más visto de la semana
Lo más comentado de la semana